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Abstract

We give lower bounds on the amount of memory required by one-pass streaming algorithms for
solving several natural learning problems. In a setting where examples lie in {0, 1}d and the optimal
classifier can be encoded using  bits, we show that algorithms which learn to constant error using
a near-minimal number of examples, Õ(), must use ⌦̃(d) bits of space. Our space bounds
match the dimension of the ambient space of the problem’s natural parametrization, even when it
is quadratic in the size of examples and the final classifier. For instance, in the setting of d-sparse
linear classifiers over degree-2 polynomial features, for which  = ⇥(d log d), our space lower
bound is ⌦̃(d2). Our bounds degrade gracefully with the stream length N , generally having the
form ⌦̃

�
d ·


N

�
.

Bounds of the form ⌦(d) were known for learning parity and other problems defined over
finite fields. Bounds that apply in a narrow range of sample sizes are also known for linear regres-
sion. Ours are the first such bounds for problems of the type commonly seen in recent learning
applications that apply for a large range of input sizes.

1. Introduction

The complex models that power much of machine learning’s recent success are typically fit to large
data sets using streaming algorithms that process examples one by one, updating a stored model
as they go. Their performance is often limited by their memory footprint as much as it is by the
complexity of their calculations (see e.g., Vaswani et al., 2017; Brown et al., 2020; Ramesh et al.,
2021).

We give new lower bounds on the space required to solve natural learning problems in a stream-
ing model, where each example can be processed only once. Consider a stream of data elements
Z = (Z1, ..., ZN ) drawn from a distribution P on labeled examples in the set Z = X ⇥ Y , where
X denotes a set of possible feature vectors and Y a set of possible labels (e.g., {0, 1}).

A learning algorithm’s goal, given one pass over the stream Z, is to find a hypothesis h : X ! Y

with small error on unseen examples from P . We focus on misclassification error, errP (h)
def
=

Pr(x,y)⇠P (h(x) 6= y) , though for real valued functions (e.g., when Y = [0, 1]) we consider the
expected absolute error errP (h)

def
= E(x,y)⇠P |h(x)� y| . The error of a learning algorithm A on P

with input length N is defined as the expected error on a stream of N inputs drawn from P .

errP⌦N (A)
def
= E

Z⇠P⌦N

�
errP (A(Z))

�
.
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We simply write errP (A) when N is clear from context.
Given a function class H of functions from X ! Y , we say that algorithm A (agnostically)

learns H to error " if, for every distribution P on X ⇥ Y , the algorithm A finds a hypothesis
with (expected) error at most " more than that of the best hypothesis in H, that is, errP (A) �

infh2H
⇣

errP (h)
⌘
 " . For concreteness, we will consider an algorithm successful it if learns a

particular class to error better by a constant than one gets by random guessing. For example, we
might assume there is an h⇤ 2 H for which errP (h⇤)  1/4 and require our algorithm have expected
error at most 0.49.

In this paper, we ask how much memory is needed for a streaming algorithm to agnostically
learn H as a function of the size  = log |H| of the function space,1 the data dimension d =
log |X | and the stream length N . A streaming algorithm receives each example once; the algorithm’s
memory size on a given execution is the maximum number of bits used to encode its state between
processing examples. The output is a function of the final state.

If space is not a concern, observe that, for any class H and any distribution P , it suffices to
receive O() examples from P in order to find a hypothesis with error within a small constant of
the best hypothesis in H. Thus, there is an algorithm that uses a stream of length N = O() and
space O(d) bits which simply stores its entire stream and attains low expected error.

Strong Bounds for Sparse Models We show simple, natural function classes (capturing, for ex-
ample, sparse linear classification over a degree-2 polynomial feature space) for which this trivial
memory bound is tight. Specifically, every algorithm that uses a stream of length Õ() and finds
a hypothesis whose accuracy exceeds random guessing by a constant must, on average over execu-
tions, use ⌦̃(d) bits of memory. Our lower bounds do not assume any particular form or running
time of the algorithm or its output; they build on information complexity techniques developed by
Braverman et al. (2020) for bounding the space complexity of statistical estimation.

In a breakthrough result, Raz (2018) proved such a bound for the class of parity functions over
d-bit inputs. In his setting, the function class H is also the set of d-bit strings, so d = . Raz (2018)
proved that any streaming algorithm solving parity learning requires either ⌦(d2) = ⌦(d) bits of
memory or 2⌦() examples. Subsequent papers extended and generalized these results, in particular
to higher-degree polynomials and related classes (see Section 2).

These results are striking. However, they do not obviously imply lower bounds for the func-
tion classes (linear models, neural networks) that are the focus of much modern machine learning.
Although several authors have studied memory bounds for problems of a more continuous flavor,
initial lower bounds were generally limited to the form ⌦̃(max(, d))—that is, the lower bounds are
limited to either the size of the model or the size of a single example (Steinhardt and Duchi (2015);
Garg et al. (2014); Braverman et al. (2016)). Several recent papers prove stronger lower bounds,
but under significant restrictions on either parameter ranges (Sharan et al., 2019; Dagan et al., 2019;
Dagan and Shamir, 2018) or the computational model (Marsden et al., 2022). We discuss these
further in Related Work (Section 2).

We consider a simple distributional problem, described below, and show a memory lower bound
of ⌦̃(d ·



N
) for all N � . It implies memory lower bounds for learning a number of natural

function classes. These include:

1. We focus on the cardinality of the function space for simplicity but, for continuous spaces, one should think of  as
the bit length of an appropriate discrete representation of functions in H.
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1. Direct sums of k dictators: Let X = [k] ⇥ {0, 1}d
0

(for d0 = d � log2 k, so inputs can be
described with d bits) and consider classifiers hi1,...,ik specified by k indices in [d0], where
hi1,...,ik(j, x) = xij (that is, for each j there is a single bit of x that determines the label).

2. Sparse linear classifiers over degree-2 polynomial features: Let X = {0, 1}d, and consider
classifiers of the form h(x) = sign(hw,�(x)i) where �(x) denotes the values of degree-2
monomials in the entries of x (so each entry of �(x) equals xixj for two indices i, j 2 [d])

and w 2 {0, 1}(
d
2) has at most k nonzero entries. The classifiers we study may also be

viewed as k-term 2-DNFs: Let X = {0, 1}d and consider functions given by the OR of k
terms, each of which is the AND of two input bits.

3. Multiclass sparse linear classifiers: Let X = {0, 1}d and Y = [k] (so there are k distinct
labels). Let H comprise all functions of the form h(x) = argmaxj2[k] hwj , xi where each
wj 2 {0, 1}d has O(log k) nonzero entries. The combining function can also be taken to be a
“softmax” instead of the exact argmax.

4. Real-valued regression: Let X = {0, 1}d and Y = [0, 1]. Consider functions realizable by a
sparse two-layer neural network with a single hidden layer of k ReLU nodes, each of which
is connected to at most O(log k) input nodes. The weights on the wires in the first layer are
either 0 or 1, and those in the second layer are in

n
0, 1

k�1 ,
1

k�1 , ..., 1
o

.

For each of these settings,  = ⇥̃(k log d) and we show a space lower bound of ⌦̃(dk) = ⌦̃(d)
when N is close to the minimal sample complexity of ⇥(). For two of the classes above, sparse
linear classifiers over the polynomial features and k-term 2-DNFs, our bounds apply for 1  k 
d/2. Our bounds for the remaining problems apply for k anywhere from 1 to superpolynomial in d.

Our bounds degrade gracefully as the sample size increases. For N � , every learner that
succeeds with a stream of N examples requires memory at least ⌦̃(d2/N). In this regard, our
bounds behave similarly to the initial, weaker bounds for regression-like problems, but are not as
strong as those for learning parity and other algebraic problems (as in Raz (2018)).

For Example 1 (dictators), our lower bounds are matched up to logarithmic factors in all pa-
rameter regimes by empirical risk minimization, which runs in l inear time; see Appendix G.2. For
Examples 2 and 3 (sparse linear models), multiplicative weights—a widely used continuous opti-
mization procedure—asymptotically matches our lower bounds on the particular input distributions
that arise in our arguments; see Appendix G.3. (It is unclear whether the algorithm PAC learns these
classes under arbitrary distributions, nor what provable guarantees are achievable for Example 4.)

A Simple, Distributional “Core” Problem Our bounds all derive from space lower bounds for
the following simple problem, described more completely in Section 3 and parametrized by positive
integers d, k, and ⇢  d. The learner receives a stream of N inputs in [k]⇥ {0, 1}d, each of which
consists of a “subpopulation identifier” in [k] and a feature vector in {0, 1}d.

• The input stream is drawn i.i.d. from a distribution P which is a uniform mixture of k compo-
nents. Each component j’s distribution is specified by a set Ij of up to ⇢ indices in [d] and bits
(bj,i)i2Ij . An observation from component j is a pair (j,X) where X 2 {0, 1}d is uniform
except for coordinates in Ij , which are set to their bj,i values. The entire distribution P is thus
specified by k sets I1, ..., Ik and the associated bits (bj,i)j2[k],i2Ij .

3
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• To generate the parameters of P , each component’s parameters are generated independently
by sampling a number r uniformly in {0, . . . , ⇢}, and then selecting a size-r subset Ij of fixed
features, with the bit values of the features selected uniformly.

• After receiving N examples drawn from P , the algorithm is presented with a test pair (j, x)
which is either drawn from P (the “structured” case) or drawn uniformly at random from
[k]⇥ {0, 1}d (“uniform”); the algorithm must distinguish between these two cases.

One can reduce this distributional problem to agnostic learning of any of the classes mentioned
above—see Appendix F.

For a distribution P in the class above, there is a simple optimal distinguisher: given a pair (j, x),
it checks if x agrees with bj,i in each position i 2 Ij ; it outputs “structured” if all the checks pass and
“uniform” otherwise. Even when ⇢ = 1 (so there are either 0 or 1 fixed bits in each subpopulation),
this distinguisher has advantage 1/8 over random guessing. More generally, it has advantage 1

2 �

O
⇣
1
⇢

⌘
. It is not hard to learn such a distinguisher: for all ⇢ � 1, a distinguisher with constant

advantage over random guessing can be learned from ⇥(k log(d)) examples using space O(dk).
More generally, for N = ⌦(k log(d)) and 1  ⇢  d, a simple strategy (described for completeness
in Appendix G.1) learns a distinguisher with constant advantage in space O

⇣
dk ·

k

N
·
1
⇢

⌘
. We show

that these simple strategies are essentially optimal.

Theorem 1 (Informal, see Theorem 12) Consider the above streaming problem with N examples,
d dimensions, k components, and at most ⇢ fixed features, with ⇢ = o(d1/4). Any algorithm solving
this task to constant error less than 1

2 requires space ⌦
⇣

k
2
d

N⇢4

⌘
= ⌦

⇣
dk ·

k

N
·

1
⇢4

⌘
.

The ratio N/k is the expected number of examples from each subpopulation. For ⇢ that is at most
logarithmic in d, the bounds have the form ⌦̃

�
k ·

d

T

�
, where T = N/k. The bound may be viewed as

incorporating two statements: the memory required to learn to distinguish a particular subpopulation
using T examples scales as d

T
, and there is no better way to solve the larger problem than to learn

each subpopulation individually.

Discussion A widespread strategy in modern deep learning is to first train a large, dense network
and then use it to find a smaller network by distillation or pruning. One common explanation for this
approach is that optimization in the larger space is easier (see, e.g., Frankle et al. (2020); Bartlett
et al. (2021)). Our work suggests a different explanation for this strategy’s empirical success—
namely, the larger parameter vector allows the training process to encode information whose rele-
vance to the problem can only be understood later. In particular, we show that training algorithms
for sparse models must sometimes use space proportional to the ambient dimension of the natural
encoding, rather than with the size of the examples or the final classifier.

Our lower bounds hold only for one-pass streaming algorithms. This covers the common train-
ing strategy in settings where large amounts of data are available (e.g., Brown et al., 2020, who use
partial epochs for some corpora). However, when data is not so abundant, machine learning models
are often trained by taking multiple passes over the data sets. We conjecture that similar bounds hold
for multi-pass algorithms. That is, it seems likely that a stream of a · n fresh examples is at least as
useful as a passes over n examples; however, proving statements of that nature is challenging (Garg
et al. (2019) and Dagan and Shamir (2018) provide notable successful examples), and we leave it as
an open problem for future work.
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Techniques We bound an algorithm’s space usage using specific measures of information com-
plexity. The core distributional problem we use is inspired by the clustering problem used by Brown
et al. (2021) to prove that high-accuracy learning algorithms must sometimes store considerable in-
formation about individual examples in their final hypothesis. We change the problem in a few
respects (fewer fixed bit positions; a focus on distinguishing instead of labeling). More importantly,
the current paper employs a very different technical approach.

Our “single subpopulation” task, defined in Section 3, is closely related to the “hide-and-seek
problem” of Shamir (2014). Both problems consider streams where examples are d-bit strings.
In each example, all but a few (a priori unknown) indices are uniformly random. Beyond some
technical details in the setting, the relevant difference is the notion of information cost used in our
lower bound which, as we discuss below, allows us to lift the results to larger problems.

Our main technical tool is a notion of information cost recently introduced in Braverman et al.
(2020), which we sometimes refer to as the “composable information cost” of algorithm M , denoted
CI(M):

CI(M)
def
=

NX

i=1

NX

t=i

I(Mt;Xi | Mi�1), (1)

where Xi is the i-th example and Mt is the algorithm’s state after processing Xt. We make no
assumptions on the form of the memory state. I(·; ·|·) denotes Shannon’s (conditional) mutual
information. This information cost is always measured relative to a specific distribution on the
input X . Composable information cost is useful for streaming applications when proving direct-
sum-type statements, turning a lower bound for a simpler problem into a bound for a more complex
one. Furthermore, 1

N
· CI(M) is a lower bound on the space used by the algorithm (Lemma 20).

A key first step, which illustrates the measure’s utility, is a new lower bound we prove in Sec-
tion 4 for the task of distinguishing whether a stream of bits is uniformly random or fixed (either to
zero or one)—a special case of the coin problem (Braverman et al., 2020, 2021). In the coin prob-
lem, the learner is asked to distinguish whether a stream of flips resulted from a biased or unbiased
coin. We prove that, when X is uniformly distributed, CI(M) = ⌦(1). By itself, this bound only
implies (trivial) space usage of at least one bit. However, the bound is nontrivial: it shows that the
information cost is nonzero even conditioned on the answer (in this case, “uniform”). Together with
structure of composable information, it allows us to derive lower bounds for our core task.

Our argument that lifts a memory bound for a 1-bit stream to k interleaved d-bit streams is
inspired by the arguments of Braverman et al. (2020) (namely, lower bounds for the Simultaneous
k-Coins Problem and the random-order k-Coins Problem). Our applications require extension and
modification of these techniques, which we now describe.

In some of our proofs, it is easier to work with a subset of the terms in (1): we define fCI as just
the “diagonal terms” of CI:

fCI(M)
def
=

NX

t=1

I(Mt;Xt | Mt�1). (2)

Since mutual information is nonnegative, we have CI(M) � fCI(M). Furthermore, fCI allows us to
consider a “full-memory” version of M that observes all previous states. We discuss this more in
Section 4.
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Our reductions use an algorithm for a “big” task to construct an algorithm for a “small” task. As
is standard in information complexity arguments, this involves generating synthetic inputs to feed
to the bigger algorithm alongside the real input. When these inputs are uniformly distributed, this
introduces no overhead, but in our problems the inputs must be drawn from a specific distribution.
This synthetic distribution is associated with a set of parameters F , which is itself a random variable
and cannot be hard-wired into the algorithm. Our approach is simplified by conditioning on these
parameters in the information cost itself, as

CI(M | F )
def
=

NX

i=1

NX

t=i

I(Mt;Xi | Mi�1, F ).

We define fCI(M | F ) similarly. This means that our information complexity bounds are really
measuring how an algorithm must store information about its input that is not about the actual
distribution. In this sense, the bounds show that some form of memorization (in the spirit of Brown
et al. (2021)) is needed at intermediate points in the computation.

Finally, we extend the treatment of random-order streams in Braverman et al. (2020). They
apply a lower bound for the (single-coin) Coin Problem to prove a lower bound for the k-Coins
Problem, where at each time step the learner receives an update from a randomly chosen coin. This
theorem is then applied to data streaming problems (such as `2 Heavy Hitters) in the random-order
model. This setting is similar to our core problem, and indeed our reduction is almost identical.
We depart from Braverman et al. (2020) in the analysis: they define a notion of a “good” sequence
of arrivals and, for any fixed good sequence, prove a lower bound for algorithms operating on that
sequence. This suffices for their purposes but not for ours. For our learning task, an algorithm with
advance knowledge of the sequence of arrivals can get by with lower information cost. Instead, in
our analysis, we let the sequence S 2 [k]N be a random variable, and prove a lower bound on the
expression CI(M | S, F ). Although we condition on S, we exploit the learner’s uncertainty, at
any given time, about the part of S it has not yet seen. This enables a more direct proof, which we
believe may be useful in other random-order streaming applications.

2. Related Work

Lower Bounds Following Raz’s Argument As mentioned in the introduction, one closely related
line of work proves memory lower bounds for problems defined over finite fields, such as learning
parities (Raz, 2018; Garg et al., 2018, 2019). The closest classes to the ones we consider are sparse
parities. However, the techniques in the literature appear limited to analyzing parities that depend on
at least log(d) variables. Lower bounds for these do not obviously imply bounds for the continuous
function classes normally used in practice.

The algebraic bounds were generalized to rely on combinatorial conditions such as two-source
extraction (Garg et al., 2018), mixing (Moshkovitz and Moshkovitz, 2017; Beame et al., 2018),
and SQ dimension (Moshkovitz and Tishby (2017) and Gonen et al. (2020), following early work
of Steinhardt et al. (2016)). These frameworks do not appear to yield nontrivial bounds for the
our parameter settings, since the function classes we consider do not obviously satisfy the required
combinatorial properties (in particular, they are very poor extractors and have low SQ dimension).

Lower Bounds for Single-Sample Distributed Regression The work on learning parity was
inspired by a related line of work on learning in streaming and distributed models that focused
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on regression-like problems (Steinhardt and Duchi, 2015; Braverman et al., 2016). The most di-
rectly relevant works consider k-sparse regression, showing lower bounds of ⌦̃(d) on the memory
required to learn with the minimal number of samples, ⇥̃(k) (and lower bounds of ⌦̃

�
d · k

N

�
in

general). Lower bounds such as ours, which exceed the data dimension, do not fit into these pa-
pers’ distributed framework, since the protocol in which each player broadcasts their input always
succeeds at learning and uses O(d) bits of communication per player. That said, our bounds for the
case k = 1 are essentially bounds on distributed regression. They require new proofs in order to
bound an appropriately composable notion of information complexity.

Strong Lower Bounds for Restricted Parameter Ranges For linear regression in the streaming
setting, Sharan, Sidford, and Valiant (2019) give a memory lower bound of ⌦(d2) = ⌦(d) as
long as N = o(d log log(1/")), where " is the accuracy parameter. This bound exceeds the size
of a single example, but applies in a somewhat narrow range of sample complexity (or, seen as a
lower bound on sample complexity, exceeds the unrestricted sample complexity of ⇥(d) by a factor
of log log(1/")). Independent work of Dagan et al. (2019) also gave a memory lower bound of
⌦(d2) for linear regression; although not stated as a distributional problem, it can be interpreted as
applying to streams of length exactly N = d� 1.

Dagan and Shamir (2018) give memory-sample tradeoffs for statistical estimation tasks, build-
ing on prior work by Shamir (2014). Their key theorem gives lower bounds for distinguishing
between certain families of distributions. An example is the set of distributions over {�1,+1}d

where a single pair of indices i, j satisfies E[xixj ] = " and all other pairs satisfy E[xi0xj0 ] = 0.
They prove that a streaming algorithm that solves this task with N samples requires memory size
⌦̃(d2 · 1/✏2

N
) for very low error, " = Õ(d�1/3). Their bound is matched (up to logarithmic factors)

by upper bounds in the low-correlation regime they consider; it also degrades gracefully with the
number of passes over the stream. While their techniques can be extended to supervised learning of
some hypothesis classes (such as 1-sparse linear predictors that use degree-2 monomials), they do
not extend to the constant-error regime we consider.

Streaming Lower Bounds for Other Statistical Problems The work whose techniques we use
most directly is that of Braverman, Garg, and Woodruff (2020) (extended by Braverman, Garg, and
Zamir (2021)). They considered the following k-coin problem: suppose there are k different coins.
The algorithm receives a stream of examples of the form (j, b) where b is the result of a fresh toss
of coin j. Its goal is to determine whether all the coins are fair or if some coin has bias greater than
� ⇡ 1

2 + 1
p
n

. We adopt the composable measure of information cost developed in that paper, and
its use is critical in obtaining our final bounds.

Diakonikolas, Gouleakis, Kane, and Rao (2019) give a lower bound on testing uniformity of a
distribution and related problems. They show that a streaming algorithm which, given N samples
drawn i.i.d. from a distribution over [2d], reliably distinguishes the uniform distribution from a
distribution that is ⌦(1)-far from uniform must use memory ⌦̃

⇣
2d

N

⌘
for N � 2d/2. Although the

lower bound far exceeds the size of any one sample and of the (one-bit) output, we are not aware of
how to use it to derive a nontrivial bound for our setting.

Concurrent work of Marsden et al. (2022) proved memory lower bounds for convex optimization
algorithms that use first-order queries, showing that any algorithm using significantly less than d1.25

bits of memory requires a polynomial factor more queries than a memory-unconstrained algorithm
in the low-error regime (i.e., " = o(d�6) for their lower bound to apply). The computational
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setting of first-order queries is significantly different from the general learning setting we consider;
understanding the models’ relationship is an interesting topic for future work.

Memorization. In a batch setting, Brown et al. (2021) established learning tasks for which any
high-accuracy learning algorithm, on receiving a data set X in ({0, 1}d)N , must output a classifier
M that satisfies I(M ;X | F ) � ⌦(Nd), where F is the set of parameters of the data-generating
distribution. As mentioned before, we rely on a modification of their hard distribution, but our tech-
niques and results are significantly different. They lower bound the size of the learned hypothesis
(this implies a lower bound on the space usage of the algorithm). Our results apply directly to the
space needed by the algorithm, even when the hypothesis is itself small. The hard distribution in
Brown et al. (2021) is tailored to the sample size, while our lower bounds fix the distribution and
apply to a wide range of stream lengths. Finally, our lower bounds apply to any learner with a small
constant advantage over random guessing instead of only learners with nearly Bayes-optimal accu-
racy. Identifying deeper connections between space lower bounds and memorization (Brown et al.,
2021; Bassily et al., 2018; Livni and Moran, 2020) remains a fascinating open question.

3. Task Definitions

We define the core distributional task we study, as well as the simpler intermediate problems we
analyze in order to understand it. We define and analyze an additional problem, Task B’, in Ap-
pendix D. Here, and throughout the paper, we use the notation �(S) to refer to set of distributions
over a set S and the notation U to refer to a uniform distribution (with the space implied by context).
We use “U” and “S” to denote the outputs referring to “uniform” and “structured,” respectively.

Definition 2 (Meta-Distributions) Parameters: positive integers k, d, ⇢  d. We sample distribu-
tion P 2 �({0, 1}d) from the structured subpopulation meta-distribution Qd,⇢ 2 �(�({0, 1}d)) as
follows:

• Draw r 2 {0, . . . , ⇢} uniformly.

• Draw uniformly J = {j1, . . . jr} ✓ [d] (no replacement) and B = (b1, . . . , br) 2 {0, 1}r.

To draw x 2 {0, 1}d from P = P(J ,B), set xji  bi for each ji 2 J . For j /2 J , set xj 2 {0, 1}

uniformly and independently.2

We sample distribution Pmix 2 �([k]⇥{0, 1}d) from the structured population meta-distribution
Qk,d,⇢ 2 �(�([k]⇥ {0, 1}d)) as follows:

• For j = 1, ..., k, draw Pj ⇠ Qd,⇢ and let Fj = (Jj ,Bj) denote its parameters.

Define Pmix 2 �([k] ⇥ {0, 1}d) as a uniform mixture of k distributions of the form �j ⌦ Pj , with
�j denoting the point mass on j. Let F denote the pair (J ,B), the parameters of P . Let Fmix =
(F1, ..., Fk) denote the parameters of Pmix. We call both P and Pmix structured distributions.

2. That is, P is uniform over the n� r-dimensional hypercube specified by J and B.
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Definition 3 (Task Definitions) N,T, k, d and ⇢  d are positive integer parameters.

1. (Task C, Core Problem) Learning algorithm M receives a stream of N i.i.d. samples from
Pmix. After N steps, the learner outputs a (possibly randomized) function m : [k]⇥{0, 1}d !
{“U”, “S”}. The advantage of the learner is

E
Pmix⇠Qk,d,⇢

x=(x1,...,xN )⇠iidPmix
m M(x)


Pr

(j,y)⇠Pmix

[m(j, y) = “S”]� Pr
(j,y)⇠U

[m(j, y) = “S”]
�
.

2. (Task B, Single Subpopulation) Learner M receives a stream of T examples from P , with
each example in {0, 1}d, and outputs a value in {“U”, “S”}. The advantage of the learner is

Pr
P⇠Qd,⇢

x=(x1,...,xN )⇠iidP

[M(x) = “S”]� Pr
x=(x1,...,xN )⇠iidU

[M(x) = “S”].

3. (Task A, One-Bit Stream) The learner M receives a stream of T bits and outputs a value in
{“U”, “S”}. The advantage of the learner is

Pr
b⇠U

x=(b,b,...,b)

[M(x) = “S”]� Pr
x=(x1,...,xT )⇠iidU

[M(x) = “S”].

4. A Lower Bound for the One-Bit Stream Task

Theorem 4 Consider a streaming algorithm M for Task A on T inputs that has advantage at least
�. Let M1, . . . ,MT be the memory states of M when run on uniformly random inputs X1, . . . , XT 2

{0, 1}. Then

fCI(M)
def
=

TX

t=1

I(Mt;Xt | Mt�1) �
�4

40
.

Recall that, although by itself this lower bound only implies a trivial space lower bound of
⌦(1) bits, it is nontrivial: we measure information about the stream when the stream is uniform.
In other words, the algorithm must contain information about the stream, even with respect to an
observer who knows the answer. In later sections, we use this statement to prove lower bounds for
the “larger” tasks. The proof has a simple but subtle setup. We now outline our approach; the full
proof is in Appendix B.

By assumption, M has advantage �. Since the structured data distribution chooses to fix the
stream to 0 or 1 with equal probability, there exists a value b⇤ 2 {0, 1} such that

Pr[M(b⇤ · 1T ) = “S”]� Pr
xT⇠U

[M(xT ) = “S”] � �, (3)

where 1T denotes the length-T vector of ones. For simplicity we assume b⇤ = 1; the calculations do
not rely on this choice. Consider a stream generated from the following distribution, distinct from
the structured distribution The distribution over streams is a mixture of two distributions, with the
first mixture component being uniform over all streams (corresponding to i.i.d. bits). The second
mixture component places all of its mass on the stream with every entry equal to b⇤ = 1. Let E

9
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denote the event that this stream is drawn from the second component, and Ē the event that it is
drawn from the first.

We now consider an observer that, at time t, sees Mt, all the previous states of M .3 At each
time t, the observer computes a posterior belief about event E:

pt
def
= Pr[E | Mt = mt],

with prior p0 = 1
2 . We analyze the random process P0, P1, . . . , PT formed by these posteriors when

the inputs X1, . . . , XT are uniformly random. This process depends on the inputs and any random
choices of the algorithm. By construction the sequence begins at 1

2 and, as we prove in Appendix B,
on average decreases by about �2 over T time steps.

Lemma 5 Assume algorithm M has advantage at least �. Let random variable PT be the final
posterior of M 0, i.e., PT = Pr[E | MT ]. When the inputs are uniform, we have E[PT ] 

1
2 �

�
2

4 .

We will looks at the “gaps” of the form Pt � Pt�1, the difference between consecutive time steps.
Lemma 5 shows that the random process, on average, must have a few time steps with large gaps
or many time steps with moderate gaps. We will show how these gaps reveal information about the
input bits.

We restate the proof setup for emphasis. The algorithm M has � advantage in the setup of
Definition 3, where the stream may be fixed to 1’s, fixed to 0’s, or uniform. The observer is told that
it sees M run on either the stream fixed to b⇤ = 1 or the uniform stream; it calculates a posterior
belief about which case is true. In this proof, we analyze the sequence of these posteriors when the
stream is actually uniform.

Let us zoom in on a single time step t. Fix the previous memory states m<t: this also fixes
the posterior pt�1 and the distribution over the next posterior Pt. This distribution is a uniform
mixture of two components: let D1,m<t be the distribution over Pt conditioned on Xt = 1, and let
D0,m<t be the distribution conditioned on Xt = 0. When Xt is uniform, Pt is thus drawn from the
mixture 1

2(D1,m<t +D0,m<t). Denote the means of these distributions µ1,m<t and µ0,m<t . We have
E[Pt | m<t] =

1
2(µ1,m<t + µ0,m<t) and, furthermore, we prove that pt�1  µ1,m<t . This yields the

following lemma, connecting the gaps in the posterior to the difference in the means of the mixture
components.

Lemma 6 For some time t, fix the memory states m<t. Let µ1,m<t = E[Pt | Xt = 1,M<t = m<t]
and µ0,m<t = E[Pt | Xt = 0,M<t = m<t]. We have

E[Pt � Pt�1 | M<t = m<t] �
µ0,m<t � µ1,m<t

2
.

Both sides of the inequality are negative. When the distributions D1,m<t and D0,m<t are distinct,
the posterior Pt will contain some information about the input Xt; this lemma gives us a foothold
to connect the gaps in the posterior with the difference in distributions.

We work directly with the information contained in the posterior. Lemma 19 allows us to, in the
expression for fCI, condition on all previous memory states. Since Pt is a function of these states,

3. As we make precise below, Lemma 19 states that moving to an observer with access to all previous states (instead of
just the current state) does not affect our argument.

10
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by the data processing inequality it contains no more information about Xt and we have

fCI(M) =
TX

t=1

I(Mt;Xt | Mt�1) =
TX

t=1

I(Mt;Xt | M<t)

�

TX

t=1

I(Pt;Xt | M<t).

The precise notion of “difference in distributions” we need is the Jensen-Shannon divergence,
denoted JSD(p k q) and defined in Appendix A. For uniform random variable U 2 {0, 1} and
random variable A that is distributed according to p when U = 0 and distributed according to q
when U = 1, Fact 18 states that we have JSD(p k q) = I(U ;A). Thus we have

TX

t=1

I(Pt;Xt | M<t) =
TX

t=1

E
m<t

[JSD(D1,m<t k D0,m<t)] , (4)

Looking at (4), we might hope to prove a statement such as JSD(D1,m<t k D0,m<t)
?
= ⌦(|µ1,m<t�

µ0,m<t |). If this were the case, we would be done: by Lemma 6, these mean-gaps on average
are of size �2/T . However, this statement is false.4 Instead, we prove the following lower bound
on Jensen-Shannon divergence, which is tight up to the leading constant. Although the proof is
elementary, we are not aware of the statement appearing previously.

Lemma 7 Let D0 and D1 be distributions over R with means µ0 and µ1 respectively, and let
D = D0+D1

2 . Then

JSD(D0 k D1) �
1

8
·
(µ0 � µ1)2

Var(D)
.

Plugging this lower bound into Equation (4), we see that our final task is to show that variances
are not too large on average. Formally, we show that an average choice of t and m<t yields a
distribution over Pt with variance O(1/T ).

Lemma 8 For every algorithm M solving Task A, we have E
TX

t=1

Var (Pt | M<t) 
5
4 . Here

Var (Pt | m) denotes the conditional variance EPt

h�
Pt � E[Pt | M<t = m]

�2i.

We present the main idea in the proof of Lemma 8. Let �t = Pt�Pt�1, the increment in the poste-
rior. Note that Var (�t) = EM<t [Var (Pt | M<t)], since fixing M<t = m<t also fixed Pt�1 = pt�1.
If �1, . . . ,�T were (pairwise) uncorrelated, then we would have Var (Pt) =

P
T

t=1Var (�t). Since
PT 2 [0, 1], its variance is at most 1

4 , so the average time step would have Var (Pt | M<t) =
O(1/T ). This argument does not hold for random processes in general: correlations between time
steps may introduce “additional” variance that does not appear in PT . To show that these corre-
lations do not affect our result too much, we first show that the process we consider is decreasing
on average (formally, that P0, P1, . . . , PT form a supermartingale). This implies that the correla-
tions between time steps all “point in the same direction” and only contribute a limited amount of
additional variance.

4. As a counterexample, let p and q be the following distributions: p(0) = q(1) = 1+↵
2 , and p(1) = q(0) = 1�↵

2 , for
some ↵ > 0. Then the difference in means is ↵, but a quick calculation shows that JSD(p k q) = O(↵2).

11
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5. A Lower Bound for a Single-Subpopulation Task

We show how to turn the previous lower bound for the one-bit stream task into a lower bound for
Task B, where each example is in {0, 1}d and has some number of fixed bits, with the other bits
uniformly random. The number of fixed bits is either 0 (w.p. 1/2) or uniform within {0, . . . , ⇢} for
some known ⇢ (otherwise). Let M be an algorithm for Task B. Define

⇡r
def
= Pr[M = “S” | r fixed bits].

Observe that this is well-defined even for r > ⇢. We construct a learner M 0 for Task A, the single-
stream problem, that takes advantage of the average gaps between ⇡r+1 and ⇡r. M 0 randomly
selects r 2 {0, . . . , ⇢} and then uniformly picks r indices J ✓ [d] (without replacement) and
values B 2 {0, 1}r. At each time step t, M 0 provides M with an example zt where the features
ji 2 J are fixed to bit bi. Furthermore, M 0 selects an index j0 2 [d] at which to insert the one-bit
input stream. Note that if j0 2 J the input stream is ignored; this is necessary for our information
argument. At the end of the stream, M 0 uses the output of M and knowledge of ⇡r and ⇡r+1 to
produce a guess for whether the one-bit stream is fixed. See Algorithm 1 in Appendix C for a formal
description of this reduction.

We argue in Appendix C that M 0 has advantage roughly �/⇢ when the advantage of M is �.
The proof, in effect, makes use of a hybrid argument: Algorithm 1 creates r fake fixed streams for
a uniformly random 0  r  ⇢. When the input stream is uniform, the distribution generated in the
reduction will have r fixed streams, and when the input stream is fixed the distribution will (usually)
have r + 1 fixed streams. The minor caveat is that, with probability r

d
, M 0 will select the special

index j0 to be fixed and “overwrite” its own input. When r ⌧ d this does not significantly increase
the error.

The above algorithm is carefully constructed so that, when the input stream is uniform, the
distribution fed to M matches the distribution in Task B, even conditioned on the location of the
input stream J0. To highlight this crucial fact, we present it separately.

Fact 9 The random variables J and B are independent of J0. Since J and B determine the
distributions of MT and ZT in the algorithm above, when the inputs XT are i.i.d. uniform bits
we have J0 ? (J ,B,MT , ZT ).

Lemma 10 (Information Cost) For algorithm M solving Task B on a stream of length T , let M 0

solving Task A on a stream of length T be as defined above (see Algorithm 1 in Appendix C for a
formal description). Let inputs Xt 2 {0, 1} be uniform and let Zt 2 {0, 1}d be structured with
parameters F (see Definition 2). We have

fCI(M | F ) � d ·fCI(M 0) .

Proof To generate inputs for M , M 0 stores random variable J0, the location of the input stream, and
the locations and values of the fake fixed streams: J and B. Write F = (J ,B), so the state of M 0

is M 0t = (Mt, F, J0) and thus
TX

t=1

I(M 0t ;Xt | M
0

t�1) =
TX

t=1

I(Mt;Xt | Mt�1, F, J0)

=
1

d

TX

t=1

dX

j=1

I(Mt;Xt | Mt�1, F, J0 = j),

12
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writing out the expectation over J0 = j. Next, note that Mt depends on Xt only through Zj

t
.

Formally, conditioning on J0 = j and any values of Mt�1 and F , we have the Markov chain
Mt—Zj

t
—Xt. So we apply the data processing inequality and have

fCI(M 0)  1

d

TX

t=1

dX

j=1

I(Mt;Z
j

t
| Mt�1, F, J0 = j).

Crucially, this expression involves only terms generated by M 0 as part of the reduction.
By Fact 9, we can remove the condition that J0 = j, since for any j the tuple (Mt, Z

j

t
,Mt�1, F )

is independent of the location in which M 0 inserts the input stream. We have

fCI(M 0)  1

d

TX

t=1

dX

j=1

I(Mt;Z
j

t
| Mt�1, F ).

When we condition on F , the collection of random variables Z<j

t
is independent of Zj

t
. Via

Fact 13, we can condition on Z<j

t
and apply the chain rule over Zt = (Zj

t
)j2[k] to finish the proof:

fCI(M 0)  1

d

TX

t=1

dX

j=1

I(Mt;Z
j

t
| Mt�1, F, Z

<j

t
)

=
1

d

TX

t=1

I(Mt;Zt | Mt�1, F ) =
1

d
fCI(M | F ).

The following lower bound follows directly from the lower bound of Theorem 4 and the reduc-
tion presented in this section (Appendix C’s accuracy argument in Lemma 29 and the information
cost argument in Lemma 10).

Corollary 11 Any algorithm M solving Task B on T examples with advantage at least � satisfies

fCI(M | F )
def
=

TX

t=1

I(Mt;Xt | Mt�1, F ) �
d

40

✓
�

⇢+ 1
�

⇢

d

◆4

.

6. A Lower Bound for the Core Problem

In Section 5, we saw that the lower bound for distinguishing uniform-versus-fixed one-bit streams
implies a lower bound for distinguishing uniform-versus-structured d-bit strings, where the struc-
tured distribution is defined in Definition 2. A simple argument shows that this, in turn, implies
a lower bound for the associated “test example” problem, where the learner is given a stream of
structured inputs and then, at test time, is given an example that is either structured or uniform. We
define this problem (Task B’) and present the argument in Appendix D.

In this section we sketch the argument that this lower bound implies a lower bound on Task C.
The proof, presented in Appendix E, is delicate, and we believe it may find applications in other
random-order streaming problems.

13



BROWN BUN SMITH

Theorem 12 (Lower Bound for Task C) Any algorithm M solving Task C with parameters k, d,
and ⇢ with advantage at least � satisfies

CI(M | S, F ) =
NX

i=1

NX

t=i

I(Mt;Xi | Mi�1, S, F ) �
k2d

320

✓
�

⇢+ 1
�

⇢

d

◆4

�O(k2)�O(kd).

Here the inputs Xi are structured (Definition 3).

Recall that large composable information cost implies M uses a lot of space. Formally, Lemma 20
states that 1

N
·CI(M | S, F )  maxt2[N ] |Mt|. Thus, for ⇢ = o(d1/4) and constant � we get a space

lower bound of ⌦
⇣

k
2
d

N⇢4

⌘
.

The proof of this theorem uses a similar reduction to that in Braverman et al. (2020)’s proof
of the k-Coins Problem, but our analysis differs significantly. The reduction uses an algorithm M
solving Task C to construct an algorithm M 0 solving Task B’ (the single-subpopulation version of
the problem). We pick a random index j 2 [k] and sequence of arrivals s 2 [k]N , insert the input
stream whenever st = j, and generate the other examples from k � 1 “synthetic” subpopulations.

Informally, we show that CI(M | S, F ) is k2 times larger than the composable information cost
of M 0. The first factor of k arises because M does not “know” the location of the true input stream:
it must solve all subpopulations at once.

The second factor of k is the crux of the proof, and we present it here.5 Fix a sequence of arrivals
up until time t0, when we received an example from subpopulation j. Let T1 denote the time of the
next arrival from that subpopulation; it is a random variable. After some manipulation, we arrive at
a sum of terms, each with the form (for some t � t0):

Pr[T1 > t] · I(Mt;Xt0 | Mt0�1, T1 > t). (5)

Then we observe two facts. First, we have that Pr[T1 > t] = k · Pr[T1 = t + 1], since T1 � t0
is a geometric random variable; at every time step we see an arrival from subpopulation j with
probability 1

k
. Second, since the algorithm cannot depend on events that happen after time t, it

cannot distinguish the event T1 > t from the event T1 = t+ 1, so we have that (5) is equal to

k · Pr[T1 = t+ 1] · I(Mt;Xt0 | Mt0�1, T1 = t+ 1).

This equality introduces the second factor of k and facilitates the move from discussion information
about M to information about M 0, which must account for the information M stores at time T1�1.
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Appendix A. Preliminaries

In this section, we present basic facts and tools used in the paper. For additional definitions and
background, see a reference such as Cover and Thomas (1991). Lemma 19 is new to this paper and
Lemma 20 is slight modification of a statement in Braverman et al. (2020).

Fact 13 Let A,B, and C be random variables. Suppose A and C are independent. Then we have
that I(A;B)  I(A;B | C).

Fact 14 Let A,B, and C be random variables. Then I(A;B | C)  I(A;B) + I(A;C | B).

These facts are easily proved by writing out the chain rule two different ways and using the nonneg-
ativity of mutual information:

I(A;B,C) = I(A;B) + I(A;C | B)

= I(A;C) + I(A;B | C).

A standard property of mutual information is the “data processing inequality,” which says that if
random variables X—Y —Z form a Markov chain, then I(X;Z)  I(Y ;Z). Streaming algorithms
are a special case of this, so we have the following.

Proposition 15 (DPI for Streaming) For any streaming algorithm M (using only private random-
ness at each time step) run on i.i.d. inputs {Xt} and any time steps t1  t2  t3, we have

I(Mt3 ;Xt1 | Mt1�1)  I(Mt2 ;Xt1 | Mt1�1).

We require several ways to measure differences in probability distributions.

Definition 16 (Distances and Divergences) Let p and q be probability distributions over the same
space X . Define the following:

• Kullback-Leibler divergence: KL(p k q) =
P

x2X
p(x) log p(x)

q(x) .

• Jensen-Shannon divergence: JSD(p k q) = 1
2KL

�
p k p+q

2

�
+ 1

2KL
�
q k p+q

2

�
.

• Total variation distance: TV(p, q) = 1
2

P
x2X

|p(x)� q(x)|.

• Squared Hellinger distance: H2(p, q) = 1�
P

x2X

p
p(x)q(x).

Fact 17 For any distributions p and q, we have TV(p, q) 
p
2H(p, q).

We use the fact that two of our measures relate directly to the problem of distinguishing distri-
butions.
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Fact 18 Let B 2 {0, 1} be a uniform random variable. For distributions p and q, let random
variable X satisfy X ⇠ p if B = 0 and X ⇠ q otherwise.

(i) I(X;B) = JSD(p k q).

(ii) Let F be the space of functions f : X ! {0, 1}. We have

max
f2F

Pr[f(X) = B] =
1 + TV(p, q)

2
.

fCI(M), as defined in Equation (2), contains information terms that condition on the previous
memory state. Our proof of Theorem 4 uses the following lemma, which says that we may replace
this term with one that conditions on all previous memory states.

Lemma 19 Consider any streaming task where the inputs X1, . . . , XT are independent. For any
streaming algorithm M and any time step t 2 [T ], we have

I(Mt;Xt | Mt�1) = I(Mt;Xt | M<t).

Proof Observe that we have the Markov chain M<t�1—Mt�1—Mt—Xt. Using the chain rule, we
have

I(Mt;Xt) = I(Mt�1;Xt) + I(Mt;Xt | Mt�1) + I(M<t�1;Xt | Mt�1,Mt)

= 0 + I(Mt;Xt | Mt�1) + 0.

The first term is zero because the stream is i.i.d., and the third term is zero because of the Markov
chain. Applying the chain rule again in a different order, and using the fact that M<t ? Xt, we have

I(Mt;Xt) = I(M<t;Xt) + I(Mt;Xt | M<t)

= 0 + I(Mt;Xt | M<t).

So the two information terms are equal.

Lemma 20 In Task C, the core task, let random variables S and F be the sequence of subpop-
ulation arrivals and subpopulation parameters, respectively. For any algorithm M and time step
t 2 [N ] we have

tX

i=1

I(Mt;Xi | Mi�1, S, F )  |Mt| (6)

and thus

1

N
· CI(M | S, F )  max

t2[N ]
|Mt|. (7)
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Proof First we show that Equation (6) immediately implies Equation (7). Reordering the terms in
CI(M | S, F ), we see that

1

N
· CI(M | S, F ) =

1

N

NX

i=1

NX

t=i

I(Mt;Xi | Mi�1, S, F )

=
1

N

NX

t=1

tX

i=1

I(Mt;Xi | Mi�1, S, F )

 E
t
[|Mt|]  max

t2[N ]
|Mt|.

It remains to prove Equation (6). We have I(Xi;M<i�1, X<i | Mi�1, S, F ) = 0 (since Xi

depends only on F and S). We apply Fact 13 and have the inequality

tX

i=1

I(Mt;Xi | Mi�1, S, F ) 
tX

i=1

I(Mt;Xi | Mi�1,M<i�1, X<iS, F ).

Next we add another (nonnegative) mutual information term and apply the chain rule twice:

tX

i=1

I(Mt;Xi | Mi�1, S, F ) 
tX

i=1


I(Mt;Xi | Mi�1,M<i�1, X<i, S, F )

+ I(Mt;Mi�1 | M<i�1, X<i, S, F )

�

=
tX

i=1

I(Mt;Xi,Mi�1 | M<i�1, X<i, S, F )

= I(Mt;Xi,Mi�1 | S, F ).

This term is at most H(Mt | S, F ), which is at most H(Mt)  |Mt|.

Appendix B. Proofs for Section 4

Recall that, for algorithm M with advantage �, our analysis considers an observer who, at time t,
sees all of M ’s previous memory states mt. We consider running M on either the 1’s stream or
the uniform stream, and analyze the observer’s posterior belief {pt} about E, the event that the
stream is fixed to all 1’s. Restricting our focus to the 1’s stream (as opposed to 0’s) versus uniform
is without loss of generality, as we argued above.

We first prove that, on average, the final posterior PT has decreased significantly. Recall that
we fix prior P0 =

1
2 .

Lemma 21 (Lemma 5 Restated) Assume algorithm M has advantage at least �. Let random vari-
able PT be the final posterior of M 0, i.e., PT = Pr[E | MT ]. When the inputs are uniform, we
have E[PT ] 

1
2 �

�
2

4 .

19



BROWN BUN SMITH

Proof Let f1 denote the joint distribution over memory states mT when the input is fixed to 1’s,
and let fu denote the distribution when the input is uniform. By Bayes rule, for any fixed mT we
have

pt = Pr[E | MT = mT ] =
f1(mT ) ·

1
2

fu(mT ) ·
1
2 + f1(mT ) ·

1
2

and the expectation under the uniform inputs is

E[PT ] =
1

2

X

m

fu(m)f1(m)
1
2(f1(m) + fu(m))

.

Writing fu(m)f1(m) =
p
fu(m)f1(m)

p
fu(m)f1(m), we apply the arithmetic mean/geometric

mean inequality and have

E[Pt] 
1

2

X

m

p
fu(m)f1(m) =

1

2

�
1�H2(fu, f1)

�
,

where we have introduced the squared Hellinger distance (Definition 16). By Fact 17, the Hellinger-
total variation inequality, we arrive at

E[PT ] 
1

2
�

1

4
TV2(fu, f1).

This suffices to finish the proof: the TV distance between fu and f1 is at least �. This follows from
the �-advantage assumption on M (stated in Equation (3)) and Fact 18 part (ii), which implies that
access to the states m<T only increases the space of distinguishing functions and thus can only
increase the TV distance.

For any time t and fixed set of previous memory states m<t, the distribution over Pt is a mixture
of two distributions: D1,m<t , arising when Xt = 1, and D0,m<t , otherwise. We show that, when Pt

has a large change in expectation from pt�1, the means of these two distributions are far apart. The
core of the proof is a convexity argument showing that, when we have input Xt = 1, the posterior
belief in the stream being fixed increases on average.

Lemma 22 (Lemma 6 Restated) For some time t, fix the memory states m<t. Let µ1,m<t = E[Pt |

Xt = 1,M<t = m<t] and µ0,m<t = E[Pt | Xt = 0,M<t = m<t]. We have

E[Pt � Pt�1 | M<t = m<t] �
µ0,m<t � µ1,m<t

2
.

Proof We have E[Pt | M<t = m<t] = 1
2(µ0,m<t + µ1,m<t). Fixing M<t = m<t also fixes

Pt�1 = pt�1 for some value pt�1, so it suffices to prove

pt�1 
µ0,m<t � µ1,m<t

2
�

µ0,m<t + µ1,m<t

2
= µ1,m<t .

Let f0 be the distribution over memory states at time t when the input is Xt = 0, and define f1
similarly. With this notation, and recalling that event E means the input stream is fixed to 1’s, we
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can write the posterior as

pt = Pr[E | Mt = mt] =
f1(mt) · pt�1

f1(mt) · pt�1 +
f1(mt)+f0(mt)

2 · (1� pt�1)

=
2 · f1(mt) · pt�1

(1 + pt�1)f1(mt) + (1� pt�1)f0(mt)

=
2 · f1(mt) · pt�1

(f1(mt) + f0(mt)) + pt�1(f1(mt)� f0(mt))
.

Considering the expectation of the posterior conditioned on Xt = 1, we have

µ(1)
t

= E
f1

2

4 2pt�1

1 + pt�1 + (1� pt�1) ·
f0(mt)
f1(mt)

3

5 � 2pt�1

1 + pt�1 + (1� pt�1) · Ef1

h
f0(mt)
f1(mt)

i

=
2pt�1

1 + pt�1 + (1� pt�1) · 1

= pt�1,

The inequality use Jensen’s inequality: for any value p 2 [0, 1], 1
1+p+(1�p)·↵ is convex in ↵. To see

this, let g(↵) = (1 + p+ ↵ � p↵)�1. Then g0(↵) = p�1
(1+p+↵�p↵)2 and g00(↵) = 2(p�1)2

(1+p+↵�p↵)3 . The
numerator is nonnegative. Since ↵ � p↵, the denominator of g00 is positive.

Next we lower bound the Jensen-Shannon divergence of two distributions in terms of the differ-
ence of their means and the variance of their (uniform) mixture. For simplicity we state the proof
for discrete distributions. Since both distributions are absolutely continuous with respect to their
mixture, the continuous case is analogous.

Lemma 23 (Lemma 7 Restated) Let D0 and D1 be distributions over R with means µ0 and µ1

respectively, and let D = D0+D1
2 . Then

JSD(D0 k D1) �
1

8
·
(µ0 � µ1)2

Var(D)
.

Proof Define �(x) = D1(x)�D(x)
D(x) = D1(x)�D0(x)

2D(x) . We have D0 = (1� �)D and D1 = (1 + �)D.

JSD(D0 k D1) =
1

2

X

x

D0(x) ln
D0(x)

D(x)
+D1(x) ln

D1(x)

D(x)

=
1

2

X

x

D(x)
�
(1� �(x)) ln (1� �(x)) + (1 + �(x)) ln (1 + �(x))

�

�
1

2

X

x

D(x)�(x)2 =
1

2

X

x

D(x)

✓
D1(x)�D0(x)

2 · D(x)

◆2

.
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The inequality applies the fact6 that, for � 2 (�1, 1), (1� �) ln (1� �)+ (1 + �) ln (1 + �) � �2.
Define µ = 1

2(µ0 + µ1), the mean of D. We have

µ1 � µ0 = E
X⇠D1

[X � µ]� E
X⇠D0

[X � µ]

=
X

x

(D1(x)�D0(x))(x� µ)

= E
X⇠D


(X � µ) ·

D1(X)�D0(X)

D(X)

�



q
E

X⇠D

[(X � µ)2]

vuut E
X⇠D

"✓
D1(X)�D0(X)

D(X)

◆2
#
,

applying Cauchy-Schwarz. By definition, EX⇠D

⇥
(X � µ)2

⇤
= Var(D). Plugging in the bound

from Equation B, we have

µ1 � µ0 
p
Var(D)

p
8 · JSD(D0 k D1).

Taking squares and rearranging finishes the proof.

Before proving Theorem 4, we show that the average variances are not too large. The first step
in this direction is to show that, when the inputs are uniform, the sequence of posteriors forms a
supermartingale. The proof uses a convexity argument similar to that of Lemma 6.

Lemma 24 Let random process P0, P1, . . . , PT be the sequence of posteriors when the inputs Xt

are i.i.d. uniform. Then, for any t and past memory states m<t,

E[Pt | M<t = m<t]  pt�1.

Proof Throughout this proof, leave the conditioning on m<t implicit. Let f0 be the distribution over
memory states at time t when the input is Xt = 0, and define f1 similarly. With this notation, and
recalling that event E means the input stream is fixed to 1’s, we can write the posterior as

pt = Pr[E | Mt = mt] =
f1(mt) · pt�1

f1(mt) · pt�1 +
f1(mt)+f0(mt)

2 · (1� pt�1)

=
2 · f1(mt) · pt�1

(1 + pt�1)f1(mt) + (1� pt�1)f0(mt)

=
2 · f1(mt) · pt�1

(f1(mt) + f0(mt)) + pt�1(f1(mt)� f0(mt))
.

6. To see this, take derivatives. Let f(�) = (1� �) ln (1� �) + (1 + �) ln (1 + �). We have f
0(�) = ln 1+�

1�� and

f
00(�) = 2

1�x2 � 2, while d2

dx2 x
2 = 2, and f(0) = 02 = 0.
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We consider the expectation over uniform inputs, rewriting it as an expectation over f1:

µ(0)
t

+ µ(1)
t

2
= E

f0+f1
2


2f1(mt)pt�1

(f1(mt) + f0(mt)) + pt�1(f1(mt)� f0(mt))

�

=
X

mt

✓
f1(mt) + f0(mt)

2

◆✓
2f1(mt)pt�1

(f1(mt) + f0(mt)) + pt�1(f1(mt)� f0(mt))

◆

= E
f1

2

4 pt�1

1 + pt�1 ·
f1(mt)�f0(mt)
f1(mt)+f0(mt)

3

5

= E
f1

2

4 pt�1

1 + pt�1 ·
1�f0(mt)/f1(mt)
1+f0(mt)/f1(mt)

3

5 .

For any fixed p 2 [0, 1], 1
1+p·

1�↵
1+↵

is concave for ↵ 2 [0, 1]. To see this, let h(↵) = 1+↵

1+↵+p�p↵
. Then

h0(↵) = 2p
(1+↵+p�p↵)2 and h00(↵) = �4(1�p)p

(1+↵+p�p↵)3 . The denominator is positive and the numerator
is nonpositive.

So we have via Jensen’s inequality that

µ(0)
t

+ µ(1)
t

2


pt�1

1 + pt�1 · Ef1

h
1�f0(mt)/f1(mt)
1+f0(mt)/f1(mt)

i  pt�1
1 + 0

.

To see the second inequality, note that the denominator is always at most some constant (that de-
pends on f1) and that Ef1 [1� f0(mt)/f1(mt)] = 0.

We now upper bound the average “expected variance” of Pt, i.e., the variance of Pt on average
when M<t is fixed.

Lemma 25 (Lemma 8 Restated) For every algorithm M solving Task A, we have

E
TX

t=1

Var (Pt | M<t) 
5
4 .

Here Var (Pt | m) denotes the conditional variance EPt

h�
Pt � E[Pt | M<t = m]

�2i.

Proof Define random variable �t

def
= Pt � Pt�1, the difference in posteriors, and write PT =

P0 +
P

T

t=1�t. We will recursively apply the following elementary variance decomposition.

Claim 26 Let A,B, and C be random variables. We have

Var (A+B) = Var (A) + E
B,C

h
(B � E[B | C])2

i
+Var (E[B | C]) + 2 · Cov(A,E[B | C]).
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Proof [Proof of Claim 26] First, Var (A+B) = Var (A) + Var (B) + 2 · Cov(A,B). Next, we
add and subtract E[B | C] and expand:

Var (B) = E
C

[Var (B)] = E
B,C

[(B � E[B])2]

= E
B,C

[(B � E[B | C] + E[B | C]� E[B])2]

= E
B,C

⇥
(B � E[B | C])2 + (E[B | C]� E[B])2]

+ E
B,C

[2(B � E[B | C])(E[B | C]� E[B])]

= E
C,B

[(B � E[B | C])2] + Var (E[B | C]) + 0,

noting that we have E[E[B | C] � E[B]] = 0 for any B = b. To finish, we again add and subtract
E[B | C] and expand:

Cov(A,B) = E
A,B,C

[(A� E[A])(B � E[B])]

= E
A


(A� E[A]) E

B,C

[B � E[B | C] + E[B | C]� E[B]]

�

= E
A


(A� E[A]) E

B,C

[0 + E[B | C]� E[B]]

�
= Cov(A,E[B | C]),

again using the fact that E[B | C] = E[B].

Repeatedly applying the claim to the sum P0 +
P

T

t=1�t, we get

Var (PT ) = Var (P0) +
TX

t=1

⇣
E

M<t,�t

[(�t � E[�t | M<t)
2] + Var (E[�t | M<t)

+ 2 · Cov(Pt�1,E[�t | M<t])
⌘

�

TX

t=1

E
M<t,�t

[(�t � E[�t | M<t])
2] + 2 ·

TX

t=1

Cov(Pt�1,E[�t | M<t]),

since the variance terms are nonnegative. Recall that conditioning on m<t fixes pt�1, so

E
M<t,�t

[(�t � E[�t | M<t])
2] = E

M<t,Pt

[(Pt � E[Pt | M<t])
2].

Thus it remains to lower bound the sum of the covariance terms (which may be negative).
We begin with the fact that, for any random variables A and B, Cov(A,B) = E[(A�E[A])B].

We then apply two facts about the sequence of posteriors: first, that E[�t | M<t] is nonpositive, and
second, that (Pt�1 �E[Pt�1]) has 1 as an upper bound. (The former fact we proved in Lemma 24.)

TX

t=1

Cov(Pt�1,E[�t | M<t]) =
TX

t=1

E [(Pt�1 � E[Pt�1])E[�t | M<t]]

�

TX

t=1

E [E[�t | M<t]] =
TX

t=1

E [�t] .
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By linearity of expectation, this sum is exactly E [
P

t
�t] = E[PT � P0]. Since P0 = 1/2 this

expectation is at least �1/2, so we have, recalling the factor of 2 in front of the covariance sum,

1

4
� Var (PT ) �

TX

t=1

E
M<t,Pt

[(Pt � E[Pt | M<t])
2]� 1.

Adding 1 to both sides finishes the proof.

Theorem 27 (Theorem 4 Restated) Consider a streaming algorithm M for Task A on T inputs
that has advantage at least �. Let M1, . . . ,MT be the memory states of M when run on uniformly
random inputs X1, . . . , XT 2 {0, 1}. Then

fCI(M)
def
=

TX

t=1

I(Mt;Xt | Mt�1) �
�4

40
.

Proof Recall from Equation 4 that

TX

t=1

I(Mt;Xt | M<t) �
TX

t=1

E
M<t

[JSD(D0,m<t k D1,m<t)] .

For clarity, denote JSD(D0,m<t k D1,m<t)
def
= JSDt and EPt

⇥
(Pt � E[Pt | M<t])2

⇤ def
= Vart. Both

of these are random variables that depend on M<t; the latter is exactly the variance of the mixture
1
2(D0,m<t +D1,m<t).

Taking expectations over time steps and then over M<t, we apply Cauchy-Schwarz and then
Lemma 7, our lower bound on the Jensen-Shannon divergence:

✓
E
t

E
M<t

[ JSDt]

◆✓
E
t

E
M<t

[ Vart]

◆
�

✓
E
t

E
M<t

hp
JSDt ·Vart

i◆2

�
1

8

✓
E
t

E
M<t

h
|µ(0)

t
� µ(1)

t
|

i◆2

.

On average, the difference between µ0,m<t and µ1,m<t is appreciable: we apply Jensen’s inequality
to move the absolute value outside the expectation and apply Lemma 6:

✓
E
t

E
M<t

[ JSDt]

◆✓
E
t

E
M<t

[ Vart]

◆
�

1

8

 
1

T

TX

t=1

E
M<t

[µ0,m<t � µ1,m<t ]

!2

�
1

2

 
1

T

TX

t=1

E
M<t

[E[Pt � Pt�1 | M<t]]

!2

.

(Note that this produces a factor of 2 inside the square.) We use the fact that E[E[X | Y ]] = E[X]
for random variables X and Y and cancel out the intermediate terms in the sum, arriving at

✓
E
t

E
M<t

[ JSDt]

◆✓
E
t

E
M<t

[ Vart]

◆
�

1

2

✓
1

T
E[PT � P0]

◆2

�
1

32
·
�4

T
.
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The final inequality uses Lemma 5: the algorithm has advantage �, so E[PT � P0]  �
�
2

4 .
Rewriting the expectations as sums over t and multiplying by T 2 on both sides, we have

 
TX

t=1

E [JSDt]

! 
TX

t=1

E [Vart]

!
�

�4

32
.

Lemma 8 says the sum of variances is at most 5
4 , so we have fCI(M) =

P
T

t=1 JSDt �
�
4

40 .

Appendix C. Proofs for Section 5

We state the formal reduction in Algorithm 1. The algorithm assumes knowledge of the exact values
of ⇡r for all r 2 {0, . . . , ⇢ + 1}. These values can in principle be computed to arbitrary accuracy
given access to M ; since our argument is information-theoretic we can ignore the computational
concerns.

Algorithm 1: M 0 for Task A
input: stream x1, . . . , xT 2 {0, 1}; algorithm M for Task B; parameters d and ⇢  d.

Draw r ⇠ {0, . . . , ⇢} uniformly; /* number of “fake” fixed streams */

Draw J = {j1, . . . , jr} ✓ [d] w/o replacement; /* indices of fixed streams */

Draw B = (b1, . . . , br) 2 {0, 1}r uniformly; /* values of fixed streams */

Draw j0 2 [d] uniformly; /* location of input stream */

for t = 1, . . . , T do

Receive sample xt 2 {0, 1};
Draw zt 2 {0, 1}d uniformly;
Set zt

j0
 xt;

8j` 2 J , set zt
j`
 bj` ; /* if j0 2 J , overwrites xt */

Execute M(zt);
end

Receive output of M , OUT 2 {“S”, “U”};
if ⇡r+1 � ⇡r then

return OUT;
else

return ¬OUT; /* other entry in {“S”,“U”} */

end

Lemma 28 Suppose M for Task B has advantage at least �. Let R ⇠ Uniform({0, 1 . . . , ⇢}).
Then E[|⇡R+1 � ⇡R|] �

�

⇢+1 .

Proof Let r⇤ be the number with the highest probability of returning “S”, i.e., r⇤ = argmaxr2[⇢]⇡r.7

By the advantage assumption, ⇡r⇤ � ⇡0 � �. We discard the terms beyond r⇤ and apply the triangle

7. With advantage � > 0, we know r
⇤
� 1.
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inequality:

E[|⇡R+1 � ⇡R|] =
1

⇢+ 1

⇢X

r=0

|⇡r+1 � ⇡r|

�
1

⇢+ 1

r
⇤
�1X

r=0

|⇡r+1 � ⇡r|

�
1

⇢+ 1

�����

r
⇤
�1X

r=0

⇡r+1 � ⇡r

����� .

The intermediate terms in the sum cancel out and we are left with |⇡r⇤ � ⇡0| � �.

Lemma 29 (Accuracy of Algorithm 1) Assume M has advantage at least �. Then M 0 has advan-
tage at least

�

⇢+ 1
+

⇢

d

Proof Recall the definition of Task A: the distribution U generates uniform bits and the structured
distribution selects a random bit b 2 {0, 1} and fixes all values to b We wish to show that

Pr
xT⇠Pbit

[M 0(xT ) = “S”]� Pr
xT⇠U

[M 0(xT ) = “S”] �
�

⇢+ 1
�

⇢

d
.

To do this, we show that, on both the structured distribution and U , M 0 is correct with probability at
least 1

2 + 1
2

⇣
�

⇢+1 �
⇢

d

⌘
.

M 0 randomly selects r 2 {0, . . . , ⇢} as the number of synthetic fixed streams to feed to M .
Fix some r: we lower bound the total variation distance between the two output distributions of
M (corresponding to structured and uniform inputs to M 0). When the input stream is uniform, M
receives synthetic inputs zt with exactly r fixed streams, so outputs “S” with probability ⇡r. When
the input stream is structured, M receives synthetic inputs zt with r+1 fixed streams unless j0 2 J ,
i.e. the input stream is overwritten. This only happens with probability r

d
, so when the input stream

is structured M outputs “S” with probability
�
1� r

d

�
⇡r+1 + r

d
· ⇡r. Thus, for any r, the total

variation distance is at least
���
⇣
1�

r

d

⌘
⇡r+1 +

r

d
· ⇡r � ⇡r

��� � |⇡r+1 � ⇡r|�
⇢

d
,

using the fact that r  ⇢ and ⇡r+1,⇡r 2 [0, 1].
By Fact 18, this lower bound on total variation distance implies a lower bound on the accuracy

of M 0. Since the accuracy of M 0 is an average over r, we have by linearity of expectation that

Pr[M 0 correct] =
1

2
+

1

2

✓
E
R

[|⇡R+1 � ⇡R|]�
⇢

d

◆
.

By Lemma 28, the expectation is at least �

⇢+1 .

27



BROWN BUN SMITH

Appendix D. Proofs: From Distinguishing Inputs to Distinguishing a Test Example

In this section, we move between two versions of the “single subpopulation” task: in Task B’ the
learner receives T structured inputs and must distinguish a structured test example from a uniform
one, while in Task B the learner must determine whether its inputs are all structured or all uniform.
Recall that U denotes the uniform distribution.

Definition 30 (Task B’) Parameters: positive integers T, d, ⇢  d. The learning algorithm M
receives a stream of T i.i.d. samples from P . After T time steps, the learner outputs a (possibly
randomized) function m : {0, 1}d ! {“U”, “S”}. The advantage of the learner is

E
P⇠Qd,⇢

x=(x1,...,xT )⇠iidP
m M(x)


Pr
y⇠P

[m(y) = “S”]� Pr
y⇠U

[m(y) = “S”]
�
.

Lemma 31 For any algorithm M solving Task B’ on T examples with advantage at least �, there
is an algorithm M 0 solving Task B on T + 1 examples with advantage at least �/2 and satisfying

T+1X

t=1

I(M 0t ;Xt | M
0

t�1, F ) 
TX

t=1

I(Mt;Xt | Mt�1, F ) + 1.

Here the inputs Xt are drawn from a structured distribution with parameters F (see Definition 2).

This information inequality also holds when the Xt are i.i.d. uniform, but we only require the result
for structured distributions.
Proof In this proof, let Xi denote the structured inputs drawn from P (see Definition 2) and Ui

denote i.i.d. uniform inputs. Task B’ on T examples asks the learner to distinguish a test example,
i.e.,

(XT , XT+1) from (XT , UT+1),

and Task B on T + 1 samples asks the learner to distinguish its inputs:

XT+1 = (XT , XT+1) from UT+1 = (UT , UT+1).

Consider an algorithm M solving Task B’ and write it M(·, ·), as it takes as input a stream of
length T and an additional test example. Define

Pr[M(XT , XT+1) = “S”] = px,x

Pr[M(XT , UT+1) = “S”] = px,u.

Since M has advantage at least �, by definition we have px,x � px,u � �. Now, there is some
probability pu,u such that

Pr[M(UT , UT+1) = “S”] = pu,u.

Using the fact that pu,u cannot be close to both px,x and px,u, we design the algorithm M 0 for Task
B depending on which it is closer to.
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Case 1: If px,x � pu,u � �/2, M 0 simply runs M and outputs M ’s answer. This has advantage
px,x � pu,u � �/2.

Case 2: If px,x� pu,u < �/2, then we know that pu,u� px,u � �/2, which again gives us a way
to distinguish the two inputs. In this case, M 0 runs M through time T and then generates a fresh
uniform example UT+1 to use as the final input. In this case, M 0 has advantage pu,u � px,u � �/2.

To prove the information complexity claim, observe that, until time T , M 0 just executes M , so
we have

TX

t=1

I(Mt;Xt | Mt�1, F ) =
TX

t=1

I(M 0t ;Xt | M
0

t�1, F ).

M 0 has one final step, but without loss of generality we can assume the final state of M is a single
bit (i.e., its answer) and thus we have, in case 1, that

T+1X

t=1

I(M 0t ;Xt | M
0

t�1, F ) =
TX

t=1

I(Mt;Xt | Mt�1) + I(M 0T+1;XT+1 | MT , F )



TX

t=1

I(Mt;Xt | Mt�1, F ) + 1

In case 2, M 0 discards its final input and thus the same inequality holds.

Combining this argument with Corollary 11, we get the following lower bound.

Corollary 32 Any algorithm M solving Task B’ on T examples with advantage at least � satisifies

TX

t=1

I(Mt;Xt | Mt�1, F ) �
d

160
·

✓
�

⇢+ 1
�

⇢

d

◆4

� 1.

Appendix E. Proofs for Section 6

Theorem 33 (Theorem 12 Restated) Any algorithm M solving Task C with parameters k, d, and
⇢ with advantage at least � satisfies

CI(M | S, F ) =
NX

i=1

NX

t=i

I(Mt;Xi | Mi�1, S, F ) �
k2d

320

✓
�

⇢+ 1
�

⇢

d

◆4

�O(k2)�O(kd).

Here the inputs Xi are structured (Definition 3).

Proof We first set up some notation. Denote the sequence of arrivals’ subpopulations by s 2 [k]N .
For sequence s, let `j be the number of arrivals from j, i.e., the number of time steps t where st = j.
For the a-th arrival from subpopulation j, let qj(a) 2 [N ] denote the time of that arrival. For a > `j ,
define qj(a) = N+1. In this proof we sometimes abbreviate mutual information expressions of the
form I(A;B | C = c) to I(A;B | c), leaving the random variable in the conditioning implicit. We
will also denote the length-t prefix of a sequence s via the notation s[: t]. Similarly, s[t :] denotes
the suffix, all the terms from t + 1 until the end. Note that, contrary to programming language
conventions, the start index is exclusive.
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We rewrite the composable information cost of M , identifying terms by the subpopulation of
their input Xi and their arrival number a:

CI(M | S, F ) = E
s

NX

i=1

 
NX

t=i

I(Mt;Xi | Mi�1, F, s)

!

= E
s

kX

j=1

`jX

a=1

0

@
NX

t=qj(a)

I(Mt;Xqj(a) | Mqj(a)�1, F, s)

1

A

(Note that Lj is a random variable that depends on S.) We introduce an indicator random variable
and write the arrival sum over a = 1, . . . , N , since there are at most that many arrivals:

CI(M | S, F ) = E
s

kX

j=1

NX

a=1

{`j�a}

NX

t=qj(a)

I(Mt;Xqj(a) | Mqj(a)�1, F, s)

=
X

j,a

E
s

2

4
{`j�a}

NX

t=qj(a)

I(Mt;Xqj(a) | Mqj(a)�1, F, s)

3

5

=
X

j,a

Pr[Lj � a] E
s|Lj�a

2

4
NX

t=qj(a)

I(Mt;Xqj(a) | Mqj(a)�1, F, s)

3

5 .

We now consider the expectation above and rewrite it as an expectation over 4 terms: first the
choice of qj(a), then the choice8 of s[: qj(a)], then the choice of qj(a + 1), and finally the choice
of s[qj(a) :]. For brevity define t0 = qj(a) and t1 = qj(a+ 1). Thus we have

CI(M | S, F ) =
X

j,a

Pr[Lj � a] E
t0,s[:t0]
|Lj�a

E
t1

s[t0:]

"
NX

t=t0

I(Mt;Xt0 | Mt0�1, F, s)

#

=
X

j,a

Pr[Lj � a] E
t0,s[:t0]
|Lj�a

E
t1

s[t0:]

h
Zj,a

s[:t0]

i
,

using Zj,a

s[:t0]
as shorthand for the sum it replaces. (Note that the inner expectation need not condition

on Lj � a, since each entry in s is drawn independently.)

We now analyze Et1,s[t0:]

h
Zj,a

s[:t0]

i
. We are free to condition on the event t1 = qj(a + 1) in the

mutual information terms since it is a function of s[t0 :]; we do so and push the expectation over
s[t0 :] back inside the mutual information notation:

E
t1,s[t0:]

Zj,a

s[:t0]
= E

t1

NX

t=t0

I(Mt;Xt0 | Mt0�1, F, s[: t0], S[t0 :], t1).

8. Because we condition on Lj � a and consider the prefix up until the a-th arrival, this prefix has j as its last element
and contains a� 1 other occurrences of j.
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At this point we focus on the terms between arrivals from subpopulation j, introducing an indicator
random variable to discard the information terms corresponding to Mt1 and beyond. So we arrive
at

E
t1,s[t0:]

Zj,a

s[:t0]
� E

t1

NX

t=t0

{t1>t}I(Mt;Xt0 | Mt0�1, F, s[: t0], S[t0 :], t1)

=
NX

t=t0

Pr[T1 > t] E
t1|T1>t

I(Mt;Xt0 | Mt0�1, F, s[: t0], S[t0 :], t1)

=
NX

t=t0

Pr[T1 > t] · I(Mt;Xt0 | Mt0�1, F, s[: t0], S[t0 :], T1, T1 > t),

pushing the expectation over T1 into the information terms and adding the condition that T1 > t.
We now execute the fundamental operations in the proof. The first is that the mutual information

terms do not change when conditioning on T1 = t+1 in place of T1 > t, since these events depend
on the sequence after time t. We align the two expressions to highlight the switch:

I(Mt;Xt0 | Mt0�1, F, s[: t0], S[t0 :], T1, T1 > t)

= I(Mt;Xt0 | Mt0�1, F, s[: t0], S[t0 :], T1 = t+ 1).

The second fundamental operation is to observe that, for any fixed t0, T1 � t0 is a truncated geo-
metric random variable, since at each time step we observe an example from subpopulation j with
probability 1

k
, under the restriction that T1  N . Thus, for any t0  t < N ,

Pr[T1 > t] = k · Pr[T1 = t+ 1].

When t = N we have Pr[T1 > N ] = Pr[T1 = N + 1]. Thus we have

E
t1,s[t0:]

Zj,a

s[:t0]
�

NX

t=t0

Pr[T1 > t] · I(Mt;Xt0 | Mt0�1, F, s[: t0], S[t0 :], T1, T1 = t+ 1)

=
N�1X

t=t0

k · Pr[T1 = t+ 1] · I(Mt;Xt0 | Mt0�1, F, s[: t0], S[t0 :], T1 = t+ 1)

+ Pr[T1 = N + 1] · I(MN ;Xt0 | Mt0�1, F, s[: t0], S[t0 :], T1 = N + 1)

=
N�1X

t=t0

k · f(t) + f(N). (8)

defining the shorthand f(t):

f(t)
def
= Pr[T1 = t+ 1] · I(Mt;Xt0 | Mt0�1, F, s[: t0], S[t0 :], T1 = t+ 1).

To proceed, we need the following observation about this function f(·).

Claim 34 f(t) is nonincreasing in t.
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Proof f(t) is a product of two terms, both of which are nonincreasing in t. This holds for the
mutual information term by Proposition 15 (the DPI for streaming). It holds for the probability term
because T1 � t0 is truncated geometric.

Continuing from Equation (8), we have the following lower bound:

E
t1,s[t0:]

Zj,a

s[:t0]
� k

N�1X

t=t0

f(t) + f(N) �
k

2
· {t0 6=N}

NX

t=t0

f(t).

To see this, first note that we can discard f(N), as it is nonnegative. If t0 = N the lower bound is
vacuous, so assume otherwise and use Claim 34 to write

k · f(N � 1) =
k

2
f(N � 1) +

k

2
f(N � 1) �

k

2
f(N � 1) +

k

2
f(N).

Hit the earlier terms in the sum with a factor of 1
2 .

We can rewrite the sum
P

t
f(t) as an expectation over T1 = Qj(a + 1), recalling that T1 is a

function of S[t0 :] and we need not condition on both.

NX

t=t0

f(t) =
NX

t=t0

Pr[T1 = t+ 1] · I(Mt;Xt0 | Mt0�1, F, s[: t0], S[t0 :], T1 = t+ 1)

= I(MT1�1;Xt0 | Mt0�1, F, s[: t0], S[t0 :])

= I(MQj(a+1)�1;Xqj(a) | Mqj(a)�1, F, s[: qj(a)], S[qj(a) :]).

Thus we reach the following lower bound on CI(M | S, F ), pulling the expectation over s back
out to the front.

CI(M | S, F ) =
X

j,a

Pr[Lj � a] E
t0,s[:t0]
|Lj�a

E
t1

s[t0:]

h
Zj,a

s[:t0]

i

�

X

j,a

Pr[Lj � a] E
t0,s[:t0]
|Lj�a

"
k

2
· {t0 6=N}

NX

t=t0

f(t)

#

=
k

2
E
s

kX

j=1

`jX

a=1

{qj(a) 6=N}I(Mqj(a+1)�1;Xqj(a) | Mqj(a)�1, s, F ),

For any sequence s, the indicator random variable {qj(a) 6=N} will be zero exactly once, correspond-
ing to the final arrival. Since all of these information terms are bounded above by H(Xt)  d, we
have

CI(M | S, F ) �
k

2
E
s

kX

j=1

`jX

a=1

I(Mqj(a+1)�1;Xqj(a) | Mqj(a)�1, s, F )�
kd

2
. (9)

For any subpopulation j and sequence s (which fixes `j), Algorithm 2 defines an algorithm
solving Task B’ on `j examples. Denote the algorithm Mj,s and let �j,s be its advantage. By
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Algorithm 2: M 0 for Task B’
input: structured stream x1, . . . , xN 2 {0, 1}d; test example xtest; algorithm M ; index j 2 [k];

sequence s 2 [k]N ; parameters d, k, ⇢, N

For i 2 [k] \ {j}, sample subpopulation parameters Fi;
for ` = 1, . . . , N do

if s` = j then

Execute M(xt, j);
t t+ 1;

else

Draw z` ⇠ Fs` ; /* generate synthetic input */

Execute M(z`, s`);
end

end

Receive trained classifier MN ;
return MN (xtest)

construction, Ej,s[�j,s] = �, where � is the advantage of M . By Corollary 32, we have a lower
bound on the composable information cost of Mj,s:

`jX

a=1

I(Mqj(a+1)�1;Xqj(a) | Mqj(a)�1, s, F ) �
d

160
·

✓
�j,s
⇢+ 1

�
⇢

d

◆4

� 1.

Note that this expression is convex in �j,s, so we plug the lower bound into Equation (9), rewrite the
sum over j as an expectation, and apply Jensen’s inequality:

CI(M | S, F ) �
k

2
E
s

kX

j=1

 
d

160
·

✓
�j,s
⇢+ 1

�
⇢

d

◆4

� 1

!
�

kd

2

=
k2

2
E
s,j

 
d

160
·

✓
�j,s
⇢+ 1

�
⇢

d

◆4

� 1

!
�

kd

2

�
k2d

320
·

✓
Es,j [�j,s]

⇢+ 1
�

⇢

d

◆4

�
k2

2
�

kd

2
.

Since Ej,s[�j,s] = �, we are done.

Appendix F. Reductions from Core Problem to Agnostic Learning

In this section we show how agnostic learning algorithms for several natural functions classes can
be turned into constant-advantage learning algorithms for Task C. Throughout, “agnostic learning”
implies learning to sufficiently small constant accuracy with sufficiently high constant probability.

For each hypothesis class below, we restate the definition and then show (i) how to turn a labeled
example from Task C into a labeled example for the given hypothesis class and (ii) how to use an

33



BROWN BUN SMITH

agnostically learned hypothesis h⇤ and a test example from Task C to output an answer (either
“S”or “U”, for “uniform” and “structured”) with constant advantage. None of these reductions
require additional space or examples.

Direct Sums of k Dictators Let X = [k]⇥{0, 1}d
0
(for d0 = d�log2 k, so inputs can be described

with d bits) and consider classifiers hi1,...,ik specified by k indices in [d0], where hi1,...,ik(j, x) = xij
(that is, for each j there is a single bit of x that determines the label).

Let HDS denote the hypothesis class described above. We reduce from Task C with ⇢ = 1 and
data dimension d0, creating an algorithm M for Task C that uses an agnostic learning algorithm for
the HDS . Given an example (x, j) from Task C, M constructs a labeled example ((j, x0), y) by
drawing y 2 {0, 1} randomly and setting x0  (y · 1d)� x, where � denotes bitwise XOR. Given
a learned hypothesis h⇤ and test example (j, xtest), M constructs ((j, x0test), y) in the same manner
and outputs “S”if h⇤((j0, x0test)) = y and “U”otherwise.

The XOR operation ensures that, when a subpopulation j has a feature i 2 [d0] fixed to 0, the
label y of (j, x) is 1 iff xi = 1. For these subpopulations, then, there is a dictator that labels them
exactly. For the other subpopulations (those with a feature fixed to 1, or with no fixed features), there
is no dictator that labels examples with accuracy better than 1

2 . With ⇢ = 1, subpopulations have a 1-
in-4 chance of getting a fixed feature with value 0; this choice is independent across subpopulations,
so in expectation (over the choice of distribution) the best hypothesis in HDS will have accuracy
1
2

�
1� 1

4

�
+ 1 ·

1
4 = 1

2 + 1
8 . With high probability an agnostic learning algorithm will return a

hypothesis h⇤ with accuracy within a small constant of that, so in expectation h⇤ will have accuracy
at least 1

2 + c0 for some positive constant c0.
We now show that the algorithm M for Task C described above has constant advantage. Recall

the definition of advantage:

E
Pmix⇠Qk,d,⇢

x=(x1,...,xN )⇠iidPmix
m M(x)


Pr

(j,y)⇠Pmix

[m(j, y) = “S”]� Pr
(j,y)⇠U

[m(j, y) = “S”]
�
.

Here Pmix denotes the structured distribution and U denotes the uniform distribution over [k] ⇥
{0, 1}d. Since M outputs “S” exactly when h⇤ is correct, the first probability is at least 1

2 + c0 in
expectation. When the input is drawn from U , the label y is uniform and independent of the pair
(j, x0), so h⇤ is correct with probability exactly 1

2 .
We have established that an agnostic learning algorithm for HDS yields a constant-advantage

learner for Task Cwith the same space and sample efficiency, so any agnostic learner for HDS

requires ⌦
�
kd0 · k

N

�
bits of memory. When d = !(log k), this is ⌦

�
kd · k

N

�
.

Sparse Linear Classifiers over the Degree-2 Polynomial Features Let X = {0, 1}d, and con-
sider classifiers of the form h(x) = sign(hw,�(x)i) where �(x) denotes the values of degree-2
monomials in the entries of x (so each entry of �(x) equals xixj for two indices i, j 2 [d]) and

w 2 {0, 1}(
d
2) has at most k nonzero entries.

Let HSL denote the hypothesis class described above. We reduce from Task C by reducing from
the Direct Sums of k Dictators class: any algorithm for agnostically learning HSL on d dimensions
can be used to agnostically learn HDS . Let f : [k] ! {0, 1}k represent one-hot encoding and let
d0 = d � k. Given a labeled example ((j, x), y) 2 [k] ⇥ {0, 1}d

0
⇥ {0, 1} for the Direct Sum of k
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Dictators class, construct a labeled example (f(j) �x, y), where � denotes concatenation. Note that
this construction requires d � k.

For any function hi1,...,ik in the Direct Sums of k Dictators class, there is a function h(z) =

sign(hw, k(z)i) with k-sparse w 2 {0, 1}(
d
2) such that for all (j, x) we have hi1,...,ik(j, x) =

h(f(j) � x). Explicitly, indexing into w with pairs (i, j), we construct

w(i,j) =

(
1 if j  k and i = ij + k

0 otherwise
.

Thus, under this encoding, HDS ✓ HSL and any agnostic learning algorithm for HSL is also one
for HDS , since for a classifier h⇤ and constant c we have

err(h⇤)  min
h2HSL

err(h) + c  min
h2HDS

err(h) + c.

This implies that agnostically learning HSL for d � k requires ⌦
�
k(d� k) · k

N

�
bits of memory.

For d � 2k, this is ⌦
�
kd · k

N

�
.

k-term 2-DNFs Let X = {0, 1}d and consider functions given by the OR of k terms, each of
which is the AND of two input bits.

Let HDNF denote the hypothesis class described above. We use the same reduction as we used
in HSL: any algorithm for agnostically learning k-term 2-DNFs can be used to learn HDS . We use
the same encoding: given a labeled example ((j, x), y), construct a labeled example (f(j) � x, y).
For every function hi1,...,ik 2 HDS , there is an equivalent function h 2 HDNF , namely:

h(x) =
k_

j=1

�
xj ^ xk+ij

�
.

Thus the lower bound for HSL also applies here, and for any d � 2k agnostically learning HDNF

requires ⌦
�
kd · k

N

�
bits of memory.

Multiclass Sparse Linear Classifiers Let X = {0, 1}d and Y = [k] (so there are k distinct
labels). Let H comprise all functions of the form h(x) = argmaxj2[k] hwj , xi where each wj 2

{0, 1}d has O(log k) nonzero entries.
We reduce from Task C with ⇢ = O(log k). Given an example (j, x) from Task C, we construct

a labeled example (x, j), with the subpopulation identifier as the label. Given a hypothesis h⇤ and
test example (j, xtest), we output “S” if h⇤(xtest) = j and “U” otherwise.

Since with ⇢ = O(log k) the optimal linear multiclass classifier of this form has at most low
constant error, this output will be correct with high constant probability and we have a space lower
bound of ⌦

⇣
k
2
d

N⇢4

⌘
= ⌦

⇣
k
2
d

N log4 k

⌘
.

Real-Valued Regression Let X = {0, 1}d and Y = [0, 1]. Consider functions realizable by a
sparse two-layer neural network with a single hidden layer of k ReLU nodes, each of which is
connected to at most O(log k) input nodes. The weights on the wires in the first layer are either 0
or 1, and those in the second layer are in

n
0, 1

k�1 ,
1

k�1 , ..., 1
o

.
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We reduce from Task C with ⇢ = O(log k). Note that we can express the set of target values
as
�
0, 1

k�1 ,
2

k�1 , . . . , 1
 
=
�
j�1
k�1

 k
j=1

. We modify the previous reduction: given an example (j, x)

from Task C, we construct a labeled example (x, (j � 1)/(k � 1)). Given a hypothesis h⇤ and test
example (j, xtest), we compute � =

���h⇤(xtest)� j�1
k�1

��� and flip a coin that comes up heads with
probability �. If the coins is heads output “U” and if tails output “S”.

Let E be the event that the coin comes up heads. On a structured input, the probability the
reduction described above yields the incorrect answer is

Pr[E] = E
j

X

x

Pr[Xtest = x] · |h⇤(xtest)� (j � 1)/(k � 1)| ,

exactly the expected error of the regression model on the structured distribution.
We now show that, with ⇢ = O(log k), the optimal regression model of this form has at most

small constant error, say 1
10 . Each hidden node has a wire to the output node with a weight of the

form j�1
k�1 ; call this “hidden node j.” The activation function for this node is ReLU, with a fixed

offset (or bias) bj : f(x) = max {0, x� bj}. Call a subpopulation good if it has at least 2 log k
indices fixed to 1. We now construct a specific neural network. If subpopulation j is not good,
we set to 0 the weights of all wires incoming to hidden node j. If subpopulation j is good, we
(i) take 2 log k wires running from indices fixed to 1 to hidden node j and set their weights to 1,
and (ii) set bj = (2 log k) � 1 as the bias. We claim that, with high probability over the choice of
distribution, this construction has low constant error (in particular, with high probability over the
choice of example it produces the exact correct label). To see this, first note that for ⇢ � 2 log k,
with high probability a large constant fraction of the subpopulations are good. If this occurs, the
neural network will have low constant error. Let random variable Zj be the input to hidden node j on
a random input X (drawn from the structured distribution, as in the reduction above). The label for
X is j�1

k�1 ; the neural network outputs this value exactly if (i) j is a good subpopulation and (ii) for
every other subpopulation ` 6= j, Z` < 2 log k. Condition (i) happens with high constant probability
by assumption. Condition (ii) happens with probability at most 1

k
, since Z` = 2 log k only when all

the wires leading to hidden node ` receive input 1, which happens with probability exactly 1
k2

. A
union bound over the (at most) k � 1 other good subpopulations concludes the argument.

On uniform inputs, the output h⇤(Xtest) generated in the reduction has some distribution that is
independent of j. Letting µ = Ex⇠U [h(x)], we have by Jensen’s inequality that

Pr[E] = E
j

E
xtest⇠U

[|h⇤(xtest)� (j � 1)/(k � 1)|]

� E
j

[|µ� (j � 1)/(k � 1)|] .

This is at least 1
8 � O(1/k), with the lower-order term coming from the fact that j is discrete.

Informally, with probability 1
2 we must have |µ� j/k| � 1

4 .
Because Pr[E] has constant separation between the two cases, we have a learner for Task C with

constant advantage and a space lower bound of ⌦
⇣

k
2
d

N log4 k

⌘
for this real-valued regression task.

Appendix G. Upper Bounds

In this section, we present algorithms for some of the learning tasks considered in this paper. Ap-
pendix G.1 contains an algorithm for solving Task C, the core distributional task. Appendix G.2
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presents an algorithm for agnostic learning of Direct Sums of k Dictators. Both of these algorithms
are based on explicitly counting bits in each feature. Appendix G.3, in contrast, presents an analysis
of the standard multiplicative weights algorithm for learning the class of Sparse Linear Classifiers
over Degree-2 Polynomial Features. We analyze the algorithm for the distribution generated in the
reduction to Task C. A similar analysis applies to learning Multiclass Sparse Linear Classifiers.

G.1. An Upper Bound for the Core Problem

In this section, we present a time-and-space efficient algorithm for Task C and sketch its analysis.
On streams of length N , it uses Õ

⇣
k
2
d

N⇢

⌘
space. When N & k log k log d, the algorithm will

have constant error. Recall that, when ⇢ = o(d1/4), Theorem 12 gives a space lower bound of
⌦
⇣

k
2
d

N⇢4

⌘
. Importantly, we do not prove that this algorithm is an agnostic learner that works for any

distribution: we only prove that it has a constant advantage (see Definition 3).
We present M in Algorithm 3. It proceeds over ⌧ epochs, within each epoch attending to only a

subset of the k subpopulations.9

Space Analysis Storing the list of partitions S1, . . . , S⌧ requires O(k log k) bits. During any
epoch, M works with O(k/⌧) subpopulations and stores a reference string (d0 bits) and tracks
candidate indices via another array of d0 bits. It also tracks the Bj lists after each epoch: there are
at most k of these and they require at most O(⇢ log d) bits to specify. Thus M requires space

O

✓
k log k +

k

⌧
· d0 + k⇢ log d

◆
= O

✓
k2d log k log d

⇢N

◆
,

which matches our lower bound up to a factor of 1
⇢3

log k log d.

Error Analysis We show that this algorithm has constant advantage. Setting N0 = ck log k log d
for sufficiently large constant c ensures that, with high constant probability, within each of the ⌧
epochs all k subpopulations receive at least c0 log d examples for some constant c0 (via the m-copy
coupon collector problem). When M sees c0 log d examples from a subpopulation j (during an
epoch t in which j 2 St), it will with high probability discard all unfixed features from the set [d0],
and be left with a list Bj that is either (i) empty or (ii) contains only indices of fixed features. Since
there are no more than ⇢ fixed features, this implies that with high probability M does not return
FAIL.

We have established that, with high probability, M will identify all of the fixed features in the
first d0 = d/⇢ indices. This setting of d0 ensures that, with constant probability over the choice of
r 2 {0, . . . , ⇢} and {j1, . . . , jr} 2 [d], at least one fixed feature will land in [d0]. When M has
correctly identified all the fixed indices in the first d0 indices (and there is at least one fixed feature),
it will always output “S” on structured inputs and will output “S” w.p. at most 1

2 in the uniform
case.

G.2. Agnostic Learning of Direct Sums of k Dictators

We show how to time-and-space efficiently agnostically learn the Direct Sum of k Dictators class
described in the introduction. Recall the definition: Let X = [k] ⇥ {0, 1}d

0
(for d0 = d � log2 k,

9. The space usage can be lowered further by working with only a subset of indices. For simplicity, we ignore this
regime.
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Algorithm 3: M 0 for Task B’
input: stream (x1, j1), . . . , (xN , jN ); test example xtest; parameters d, k, ⇢, N, c

Set N0  ck log k log d, ⌧  bN/N0c, d0  dd/⇢c;
Create partition S1, . . . , S⌧ ✓ [k]; /* each of size k/⌧ */

for t = 1, . . . , ⌧ do

For all ` 2 St, set xref
`
 NULL; /* Leave uninitialized */

For all ` 2 St, set C`  1d
0 ; /* Candidate indices */

for i = 1, . . . , N0 do

Receive next example (x, j);
if j 2 St then

if xref
j

= NULL then

Set xref
j
 x[1 : d0]; /* Set reference string */

else

Set Cj  Cj ^ (x = xref
j
); /* bitwise AND, EQUAL */

end

end

end

for ` 2 St do

Set B`  {(a, xref
`
[a]) : a 2 [d0], C`[a] = 1} ; /* Fixed bits, values */

if |B`| � ⇢ then

return FAIL;
end

end

end

Receive (xtest, j);
for (a, b) 2 Bj do

if xtest[a] 6= b then

return “U”;
end

end

return “S”;
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so inputs can be described with d bits) and consider classifiers hi1,...,ik specified by k indices in
[d0], where hi1,...,ik(j, x) = xij (that is, for each j there is a single bit of x that determines the
label). Note that this class has size (d0)k  dk, so (by the standard uniform convergence argument
for finite hypothesis classes, i.e., a Chernoff bound and union bound) O(k log d) samples suffice to
guarantee that with constant probability ERM returns a classifier within constant accuracy of the
best possible. Let  = k log d.

We first show how to implement ERM using O() samples and O(d) space and time. By
definition, the probability that a classifier hi1,...,ik misclassifies a point (j, x) 2 X is the probability
that the label y differs from the bit xij . To track the empirical error, then, it suffices to store a matrix
A 2 Rk⇥d, initialized to all zeros, and update it upon receiving a labeled example ((j, x), y) 2
X ⇥ {0, 1} in the following way:

8i 2 [d], Aj,i =

(
Aj,i + 1 if xi 6= y

Aj,i otherwise
.

After  examples, we select the classifier hi1,...,ik with the smallest empirical error: for each row
j 2 [k] we select i⇤

j
= argminiAj,i, the index that minimizes the error.

This correctly implements ERM, so it is an agnostic learner. For each bit of our input we execute
O(1) operations, so the time used is O(d). The space usage is just the matrix A, which has kd
integer entries, each of which is between 0 and , so the algorithm uses O(kd log ) space (this is
O(d) as long as log d  kO(1)).

This algorithm naturally extends to longer streams of length N = O(⌧) for ⌧ � ⌦(1). We run
a similar procedure over ⌧ epochs, in each epoch receiving  examples and working with a 1

⌧
fraction

of the rows of A, i.e., a subset of the subpopulations. At the end of the epoch, we store the minimum-
error indices i⇤

j
for the rows we consider. At the end of the stream we assemble these indices to pick

a single classifier. This algorithm implements ERM, runs in linear time O(⌧d) = O(Nd), and
uses space O

⇣
d log 

⌧

⌘
= O

⇣
d

2 log 
N

⌘
, matching our lower bound up to logarithmic factors.

G.3. Multiplicative Weights for Sparse Linear Classifiers

In this subsection we present an analysis (specific to our meta-distribution) of the standard mul-
tiplicative weights learning algorithm for the hypothesis class of Sparse Linear Classifiers over
the Degree-2 Polynomial Features. Recall the definition of the class, which we denote HSL: Let
X = {0, 1}d, and consider classifiers of the form h(x) = sign(hw,�(x)i) where �(x) denotes the
values of degree-2 monomials in the entries of x (so each entry of �(x) equals xixj for two indices

i, j 2 [d]) and w 2 {0, 1}(
d
2) has at most k nonzero entries. For simplicity, we will actually analyze

learning monomials of exactly degree 2; this does not materially alter the algorithm.
The standard analysis of multiplicative weights yields an average regret bound that decreases

with Õ(1/
p
N). Informally, in our setting the classifiers with constant advantage have

P
i,j

wi,j =
⇥(k). When scaled down so the weights represent a probability distribution, this corresponds to
an advantage of O(1/k). To guarantee this regret via the standard multiplicative weights analysis
thus requires N = ⌦̃(k2). Our analysis shows that N = ⌦̃(k) examples suffice for the distributions
arising in our reduction.

Recall the distribution generated by our reduction from the core task (via Direct Sums of k Dic-
tators). Each example is associated with a subpopulation j 2 [k]. Because of our XOR construction,
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for each subpopulation j with an index i fixed to 0, when the example comes from subpopulation j
we have xi = y. Call a pair (i, j) good if subpopulation j has index i fixed to 0. For any distribu-
tion generated in our reduction, then, the optimal classifier w 2 {0, 1}(

d
2) sets wi,j = 1 if (i, j) is

good and to wi,j = 0 otherwise. Since each subpopulation (independently) has such an index with
probability 1/4, with high probability the distribution generated in our reduction will have at least
k/5 good pairs.

Consider the following instantiation of the multiplicative weights algorithm: we keep a weight
vector w(t)

2 [0, 1](
d
2), initialized to all ones. Upon receiving example x(t), the learner constructs

loss vector `(t) 2 {0, 1}(
d
2) as follows:

`(t)
i,j

=

(
1 if �i,j(x(t)) = 1 and y(t) = 0

0 otherwise
.

The weight vector is then updated via w(t)
i,j
 exp

n
�⌘`(t)

i,j

o
w(t�1)
i,j

. After processing N examples,

the learner computes pi,j =
w

(N)
i,jP

i0,j0 w
(N)

i0,j0
and returns a final classifier of the form sign(hp,�(x)i��).

The algorithm has ⌘ and � as parameters.
Observe that good indices will have w(t)

i,j
= 1 for all t. Pick a non-good index (i0, j0). Using

cases, we lower bound the probability it experiences loss. In the first case, suppose exactly one of
i0 or j0 indexes into the one-hot encoding generated in the direct sum reduction. When the example
x(t) is not from subpopulation j0 we have �i0,j0(x(t)) = x(t)

i0 x
(t)
j0 = 0 and thus `(t)

i0,j0 = 0. When
the example is from subpopulation j0 then the bit �i0,j0(x(t)) and y are independent, so we have
`(t)
i0,j0 = 1 with probability 1

4 . In the second case, suppose both i0 and j0 index into the non-one-hot
encoding section. Furthermore suppose there is a subpopulation for which neither index is fixed.10

Then �i0,j0(x) = xi0xj0 = 1 and y = 0 with probability at least 1
8k . We need not analyze the third

case (when i0 and j0 both index into the one-hot encoding section), since in our distributions this
will always yield xi0xj0 = 0. In the remainder of this analysis we will ignore indices that fall into
this case.

Suppose ⌘ is a small constant, �  1
c1k

and, for every non-good index (i0, j0), we have w(N)
i0,j0 

1
c2d

2 (for sufficiently large constants c1, c2). These conditions suffice to ensure that the classifier
returned above has constant advantage above random guessing. To see this, first note that the total
mass assigned to all non-good indices is at most 1

c2
⌧ 1, which ensures that pi,j = ⌦(1/k) � �

for every good index (i, j). Thus, when the example has label 1 and is from a subpopulation
with a good index, the learned classifier will be correct. When the example has label 0, we have
hp,�(x)i  k+d

c2d
2  �, since at most k + d indices in �(x) can be nonzero and d � k.

It now remains to show that the algorithm learns such a classifier with high probability. Fix a
data distribution containing at least k

5 subpopulations with good indices and fix a non-good index
(i, j). Let random variable Zi,j denote

P
t
`(t)
i,j

. Then Zi,j stochastically dominates Bin(N, 1/8k),
since each example is independent and receives loss with probability at least 1

8k . Furthermore,
w(N)
i,j

= exp {�⌘Zi,j}. To ensure w(N)
i,j


1
c2d

2 , then, we require Zi,j �
1
⌘
log c2d2 � c3 log d for

some constant c3. By a standard Chernoff bound, Pr[Zi,j  c3 log d]⌧
1
d2

whenever N � k log d.

10. This happens with high probability over the choice of data distribution.
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By a union bound over the d2 non-good indices, this ensures that the algorithm returns a constant-
advantage classifier with high constant probability.
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